What Is DevContainer and Why Every
Developer Will Use It Soon

This document provides a comprehensive overview of DevContainers, a revolutionary technology rapidly becoming a
standard practice in modern software development. We'll explore what DevContainers are, their core components, the
compelling reasons for their widespread adoption in 2025, practical setup guides, key use cases, and how they compare to
related technologies like Docker Compose and GitHub Codespaces. Discover why integrating DevContainers into your
workflow can save time, boost productivity, and streamline development.

https://gamma.app/?utm_source=made-with-gamma

4’ Introduction

Setting up a local development environment has historically been a significant pain point for developers. The common
refrains of "conflicting versions," "broken builds," and the infamous "it works on my machine" have plagued countless
projects. These issues often lead to wasted time, frustration, and inconsistent development experiences across teams.

Enter DevContainers — a game-changing solution designed to eliminate these long-standing challenges. By providing a
portable, isolated, and consistently configured environment, DevContainers ensure that every developer on a project,
regardless of their local machine setup, operates within the exact same parameters.

In 2025, DevContainers are rapidly becoming standard practice among developers, whether you're working solo on a
personal project or as part of a large, distributed team. This widespread adoption isn't just a trend; it's a testament to their
profound impact on development efficiency and collaboration. But what exactly is a DevContainer? Why is it gaining so
much traction? And how can it transform your development workflow?

Let's break it down and explore why every developer will soon be leveraging this powerful technology.

https://gamma.app/?utm_source=made-with-gamma

== What Is a DevContainer?

A DevContainer (short for Development Container) is a portable, isolated development environment defined by a
.devcontainer.json file and backed by Docker. It's essentially a blueprint that tells your Integrated Development
Environment (IDE) — such as VS Code or GitHub Codespaces — precisely how to set up your project workspace. This
includes specifying the operating system, necessary development tools, IDE extensions, and all project-specific
dependencies.

Imagine it as a pre-configured, self-contained box where your code runs identically on any machine. This means no more
frustrating "missing package" errors, no more unexpected behavior due to OS mismatches, and no more lengthy, error-
prone manual setup processes. The container encapsulates everything your project needs to run, ensuring a consistent and
reproducible environment for every developer.

1 {
2 "name": "Go",

3 "build“: {

4 "dockerfile": "Dockerfile",

5 "args”: {

6 // Update the VARIANT arg to pick a version of Go: 1, 1.18, 1.17

7 // Append -bullseye or -buster to pin to an 05 version.

8 // Use -bullseye variants on local armé64/Apple Silicon.

9 "WARIANT": "1-bullseye”,

18 // Options

11 "NODE_VERSION": "l1lts/*"

12 }

13 b

14 "runArgs”: ["--cap-add=5YS_PTRACE", "--security-opt", "seccomp=unconfined”],

15

16 // Configure tool-specific properties.

17 "customizations": {

18 // Configure properties specific to VS Code.

19 "wscode": {

20 // Set *default* container specific settings.json values on container create.
21 "settings": {

22 "go.toolsManagement.checkForUpdates": "local”,

23 "go.uselLanguageServer": true,

24 "go.gopath": "/go"

25 }s

26

27 // Add the IDs of extensions you want installed when the container 1s created.
28 "extensions": [

29 "golang.Go"

W

= ®

—
| —

32 ;P

The magic lies in its reliance on Docker, which provides the underlying containerization technology, and the
.devcontainer.json file, which acts as the configuration hub. This file orchestrates the entire environment, from installing
programming language runtimes to integrating specific VS Code extensions. When you open a project configured with a
DevContainer, your IDE reads this file, spins up the Docker container, and automatically configures your workspace to
match the defined specifications. This results in an instant, fully functional development setup that mirrors the environment
of every other team member, ensuring true consistency and eliminating environment-related debugging.

https://gamma.app/?utm_source=made-with-gamma

“* What's Inside a DevContainer?

Understanding the components of a DevContainer is key to appreciating its power. It's not just a single file, but a cohesive
ecosystem designed for seamless development environment replication. A typical DevContainer setup leverages several
core elements, primarily defined within a dedicated .devcontainer/ folder at the root of your project.

\

This entire stack gets auto-loaded by compatible IDEs like

Dockerfile

This is the heart of your
containerized environment. It can
specify a custom base image
(e.g., Ubuntu, Alpine) or contain
instructions to install required
software, libraries, and system
dependencies directly onto a
base image. This ensures that
the foundational operating
environment is precisely defined
and consistently built.

VS Code Extensions

A powerful feature that allows
you to specify a list of Visual
Studio Code extensions to be
automatically installed and active
inside the container. This ensures
that every team member benefits
from the same linting, debugging,
formatting, and language-
specific features, promoting
coding consistency and
improving productivity.

\

.devcontainer.json

The primary configuration file.
This JSON file dictates the
behavior of the DevContainer. It
specifies which Dockerfile or
image to use, port forwarding
rules, mounting volumes, and
crucial settings like VS Code
extensions to install
automatically within the
container, and global IDE settings
that apply to the workspace.

Custom Commands

The .devcontainer.json can
include postCreateCommand or
postStartCommand scripts.
These commands run
automatically after the container

is created or started, respectively.

They are perfect for actions like
installing project dependencies
(e.g., npm install, pip install),
running database migrations, or
setting up environment variables.

Pre-installed Tools

The .devcontainer.json or
Dockerfile defines all necessary
language runtimes (like Node.js,
Python, Java, Rust), package
managers (npm, pip, cargo),
linters (ESLint, Black), testing
frameworks, and other
command-line tools that your
project requires. These are
installed directly into the
container, making them instantly
available to all developers.

or cloud-based solutions like

. When a developer opens a project with a DevContainer configuration, the IDE handles the orchestration,
launching a fully working development environment in seconds, ready for coding without any manual intervention.

https://gamma.app/?utm_source=made-with-gamma

Why DevContainers Are Taking Over in
2025

The rise of DevContainers is not coincidental; it addresses critical pain points in modern software development. Their
benefits extend far beyond just simplifying setup, impacting team collaboration, project maintainability, and developer
flexibility.

1. Consistency Across Teams

This is perhaps the most compelling advantage. Whether you're onboarding a new team member, collaborating with
freelancers, or working with a globally distributed team, everyone operates within the exact same environment. This
eliminates the dreaded "it works on my machine" syndrome, significantly reducing debugging time spent on
environment discrepancies. Zero setup errors mean more time coding and less time troubleshooting.

2. Perfect for Open Source Projects

For open-source maintainers, DevContainers are a godsend. They allow contributors to dive into the codebase
without wading through lengthy, complex setup instructions. Simply ship a .devcontainer folder with your
repository. New contributors can then launch the repo directly in GitHub Codespaces or locally with VS Code, and
get a fully configured environment instantly. This dramatically lowers the barrier to entry for contributions, fostering
a more active community.

3. Local-First, Cloud-Ready

DevContainers offer unparalleled flexibility. You can start developing locally using Docker and VS Code, enjoying the
speed and responsiveness of your machine. When you need more power, collaborative features, or accessibility
from anywhere, the same DevContainer configuration can be seamlessly spun up in cloud environments like GitHub
Codespaces, without any extra configuration or adjustments. This hybrid approach caters to diverse development
needs.

4. Instant Recovery & Portability

Accidentally corrupt your local machine's development setup? No problem. Since your environment is version-
controlled and defined by code, you simply pull your repository and spin up the DevContainer again. All your tools,
dependencies, and settings are instantly restored. This ensures high availability of your development workspace and
makes switching machines or operating systems trivial.

5. Secure & Isolated Experimentation

DevContainers provide a sandboxed environment. This means you can safely try out risky tools, experiment with
bleeding-edge versions of libraries, or test major dependency upgrades without fear of polluting or breaking your
host machine's setup. Each DevContainer is isolated, guaranteeing that your local system remains clean and stable,
even during the most adventurous development cycles.

https://gamma.app/?utm_source=made-with-gamma

“, How to Set Up a DevContainer (Simple

Guide)

Setting up a DevContainer might seem daunting at first, but with modern IDEs like VS Code, the process is incredibly
streamlined. Here's a simplified, step-by-step guide to get you started:

Step 1: Create .devcontainer/ Folder

At the root of your project, create a new directory
named .devcontainer/. This folder will house all the
configuration files necessary for your DevContainer.

Step 3: Create devcontainer.json

Still within the .devcontainer/ folder, create a file
named devcontainer.json. This is your primary
configuration file. Here's a basic example for a Node.js
project:

{
"name": "Node DeVv",
"build": {
"dockerfile": "Dockerfile"
5
"settings": {

"terminal.integrated.shell.linux": "/bin/bash"

}
"extensions": [
"dbaeumer.vscode-eslint"

1

"postCreateCommand": "npm install"

}

This configuration names the container "Node Dev",

builds it using your specified Dockerfile, sets the default

terminal shell, pre-installs the ESLint VS Code
extension, and runs npm install immediately after
creation.

Step 2: Define Your Environment

Inside the .devcontainer/ folder, you'll need a
Dockerfile or choose a base image from Dev Container

Features. The Dockerfile specifies how your container
should be built (e.g., base 0S, software installations). If
using a pre-defined feature, you can skip a custom
Dockerfile.

Step 4: Open in VS Code

With Docker Desktop running (if on your local machine),
open your project in VS Code. You'll typically see a pop-
up asking if you want to "Reopen in Container". If not,
open the Command Palette (Cmd+Shift+P or
Ctrl+Shift+P) and search for "Reopen in Container".

Boom! VS Code will then build (if necessary) and attach to your DevContainer. You’re now running your entire development
setup inside an isolated Docker container, ready to code with all dependencies and tools pre-configured.

https://containers.dev/features
https://containers.dev/features
https://gamma.app/?utm_source=made-with-gamma

Top Use Cases for DevContainers

DevContainers are not just a theoretical improvement; they solve real-world problems for a diverse range of development
scenarios. Their ability to standardize and isolate environments makes them invaluable for various stakeholders within the
software development ecosystem.

Onboarding New Developers: For development teams,
the time and effort spent onboarding new hires can be
significant. DevContainers reduce this to almost zero.
Instead of providing lengthy setup documentation and
troubleshooting environment issues, new developers
can simply clone a repository and open itin a
DevContainer, getting a fully functional environment in
minutes. This drastically improves time-to-productivity
for new team members.

Open Source Contributions: Open-source projects
often struggle with attracting new contributors due to
complex setup processes. By including a
.devcontainer/ folder, maintainers can lower this
barrier. A potential contributor can fork the repository,
open it in GitHub Codespaces (or locally), and
immediately begin working on the code, eliminating the
frustrating "how do | run this?" phase. This fosters
greater community engagement and contributions.

Teaching & Workshops: Educators and trainers
frequently face challenges ensuring that all students or
workshop participants have identical, working
development environments. DevContainers provide a
perfect solution. Every student can launch the same
environment, guaranteeing that code examples and
exercises work consistently across the board, reducing
setup time and maximizing learning time.

Testing Against Multiple Versions: Developers often
need to test their applications against different
versions of programming languages (e.g., Node.js 16,
18, and 20), databases, or libraries. Manually managing
these versions on a single machine is cumbersome
and error-prone. With DevContainers, you can easily
spin up separate containers, each configured with a
specific version, allowing for isolated and reliable
testing without polluting your local system.

Experimenting with New Stacks: When exploring a new
programming language, framework, or toolchain,
developers typically need to install new software on
their host machine. DevContainers allow you to "try
before you commit." You can experiment with new
stacks within an isolated container. If the experiment
doesn't work out, simply delete the container without
leaving any trace on your local system, making it a safe
sandbox for innovation.

Client Project Isolation (Freelancers): Freelancers
often work on multiple client projects, each with its
own unique set of dependencies and environment
requirements. DevContainers enable perfect isolation
between projects, ensuring that dependencies for one
client's project don't conflict with another's. This leads
to cleaner setups, fewer debugging headaches, and a
more professional delivery to clients.

https://gamma.app/?utm_source=made-with-gamma

=] DevContainer vs. Docker Compose vs.

Codespaces

While DevContainers are powerful, they operate within a broader ecosystem of development tools. It's important to
understand how they differ from, and complement, related technologies like Docker Compose and GitHub Codespaces.

Primary Use

Tied to Editor?

Easy Setup?

Cloud-Ready?

Collaboration Focus

Local Resource Usage

Isolated development
environments for a single
project/IDE

Primarily integrated with
VS Code and compatible
IDEs

Simple configuration
via .devcontainer.json,
IDE-driven

Yes, seamlessly
transitions to cloud
services like Codespaces

Standardizing individual
developer environments

Requires local Docker
engine, moderate
resource use per
container

Orchestrating multi-
container applications
(e.g., app + database +
cache)

No, independent of
specific IDEs

X More complex YAML
configuration, requires
understanding of
networking/volumes

X Not directly, though
composed apps can be
deployed to cloud infra

Defining interconnected
services for an
application

Requires local Docker
engine, can be resource-
intensive for many
services

Fully cloud-based
development environment
(IDE in browser)

Yes, VS Code in the
browser (or local VS
Code)

Fully managed by
GitHub, virtually zero local
setup

Yes, it is inherently a
cloud service

Real-time collaborative
coding in the cloud

Minimal local resource
usage (just a browser)

In essence, DevContainers focus on the individual developer's workspace consistency. Docker Compose is for

orchestrating multi-service applications. GitHub Codespaces takes the DevContainer concept to the cloud, providing fully
managed, browser-based development. Often, these technologies are used in conjunction: a DevContainer might leverage a
Docker Compose setup for its services, and that entire configuration can then be hosted in Codespaces.

https://gamma.app/?utm_source=made-with-gamma

< Real-World Examples

The adoption of DevContainers is not limited to niche projects; it's being embraced by leading tech companies, popular
open-source initiatives, and agile development practitioners across the globe. These real-world applications demonstrate
the tangible benefits and versatility of the technology.

Open Source Projects Adopting
DevContainers

Many prominent open-source projects have recognized
the value of simplifying their contribution process.
Projects like nestjs (a progressive Node.js framework),
supabase (an open-source Firebase alternative), and
vite (a next-generation frontend tooling) now include
.devcontainer folders directly in their repositories. This
makes it significantly easier for new contributors to get
started, as they can instantly launch a ready-to-code
environment, fostering a more vibrant and active
contributor community.

Leading the Way

As a primary contributor to the DevContainer
specification and a developer of VS Code and GitHub
Codespaces, Microsoft heavily utilizes DevContainers
internally. Teams across Microsoft leverage
DevContainers to streamline their internal workflows,
ensuring that thousands of engineers can consistently
develop, test, and deploy applications regardless of
their diverse local machine setups. This dramatically
reduces environment-related friction and boosts overall
engineering productivity.

Freelancers Delivering Clean Environments

Freelance developers are increasingly incorporating DevContainers into their delivery process. Instead of providing
clients with complex setup instructions or relying on the client's potentially inconsistent environment, freelancers can
package their projects with a DevContainer configuration. This ensures that when the client receives the project, they
can launch it with minimal fuss, providing a "clean" and predictable development experience. This professionalism
enhances client satisfaction and reduces post-delivery support time.

https://gamma.app/?utm_source=made-with-gamma

~ Why You Should Start Using DevContainers

Today

The evidence is clear: DevContainers represent a significant leap forward in developer tooling, offering tangible benefits
that impact productivity, consistency, and overall development efficiency. Integrating them into your workflow is no longer a

luxury but a strategic advantage.

90%

Time Savings

The most immediate and impactful benefit. DevContainers
compress hours or even days of environment setup and
troubleshooting into mere seconds. This allows developers
to be productive almost immediately, redirecting valuable
time from configuration to actual coding.

95%

Seamless Flexibility

DevContainers enable a truly hybrid development approach.
You can seamlessly switch between developing locally with
Docker and VS Code, or leverage the power of cloud
environments like GitHub Codespaces, all while maintaining
the exact same project configuration. This flexibility adapts
to diverse developer preferences and project requirements.

85%

Productivity Boost

By eliminating the "it works on my machine" issues and
ensuring everyone operates in an identical setup,
DevContainers dramatically reduce environment-related
bugs and debugging time. This leads to fewer interruptions
and a more focused, productive development flow for
individuals and teams.

70%

Improved Architecture

By externalizing and version-controlling your development
environment, DevContainers encourage a cleaner, more
modular approach to project setup. It mirrors the best
practices of containerizing production applications,
extending that discipline to the development phase itself.

DevContainers are poised to become an indispensable tool in every developer's arsenal. By embracing them, you're not just
adopting a new technology; you're investing in a more consistent, efficient, and enjoyable development experience for
yourself and your entire team. Start experimenting with them today and witness the transformation firsthand.

https://gamma.app/?utm_source=made-with-gamma

